

Optical Communication System

SFP

ESCxx12-3LCD80

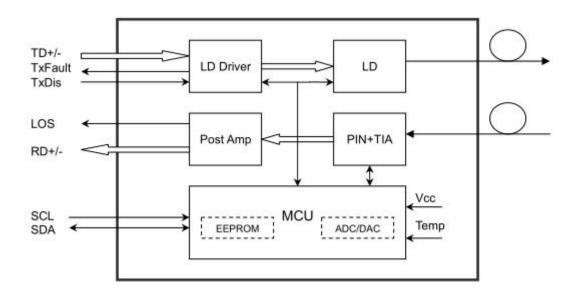
1.25Gbps CWDM SFP Optical Transceiver, 80KM Reach

- > Data-rate of 1.25Gbps operation
- > 18 CWDM DFB wavelengths laser and PIN photodetector for 80km transmission
- Compliant with SFP MSA and SFF-8472 with duplex LC receptacle
- Digital Diagnostic Monitoring:Internal Calibration or External Calibration
- ➤ Compatible with SONET OC-24-LR-1
- Compatible with RoHS
- ➤ +3.3V single power supply
- Operating case temperature: Commercial Temperature: 0 to +70°C Industrial Temperature: -40 to +85°C

Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

Description


The SFP transceivers are high performance, cost effective modules supporting data-rate of 1.25Gbps and 80KM transmission distance with SMF.

The transceiver consists of three sections: an uncooled CWDM DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information,

please refer to SFP MSA.

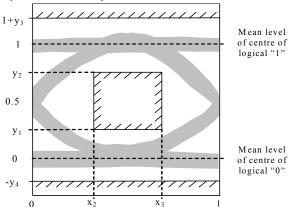
Module Block Diagram

Product Selection

ESCXX12-3LCD80

Wavelength	хх	Clasp Color Code	Wavelength	xx	Clasp Color Code
1270 nm	27	Gray	1450 nm	45	Brown
1290 nm	29	Gray	1470 nm	47	Gray
1310 nm	31	Gray	1490 nm	49	Purple
1330 nm	33	Purple	1510 nm	51	Blue
1350 nm	35	Blue	1530 nm	53	Green
1370 nm	37	Green	1550 nm	55	Yellow
1390 nm	39	Yellow	1570 nm	57	Orange
1410 nm	41	Orange	1590 nm	59	Red
1430 nm	43	Red	1610 nm	61	Brown

Recommended Operating Conditions


Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Case Operating Temperature	Tcase	0		70	°C	
Power Supply Voltage	VCC	3.13	3.3	3.47	V	
Power Supply Current	ICC			300	mA	
Power Supply Noise Rejection				100	mVp-p	100Hz to 1MHz
Data Rate			1250/1250		Mbps	TX Rate/RX Rate
Transmission Distance				80	KM	
Coupled Fiber		Sir	9/125um SMF			

Specification of Transmitter

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Average Output Power	POUT	0		5	dBm	Note (1)
Extinction Ratio	ER	9			dB	
Center Wavelength	λС	(1XX0)-Δλ	1XX0	(1XX0)+Δλ	nm	DFB Laser
						Note (2)
Side Mode Suppression Ratio	SMSR	30			dB	
Spectrum Bandwidth(-20dB)	σ			1	nm	
Transmitter OFF Output Power	POff			-45	dBm	
Differential Line Input Impedance	RIN	90	100	110	Ohm	
Output Eye Mask	Complia	ant with G.957 (class 1 las	er safety)		Note (3)

Note:

- 1) Measure at 2^23-1 NRZ PRBS pattern
- 2) "XX" is27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59 and 61; " $\Delta\lambda$ " is 7.5
- 3) Transmitter eye mask definition

X 3- X 2	0.2
y 1	0.25
y 2	0.75
y 3	0.25
y 4	0.25

Specification of Receiver

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Input Optical Wavelength	λIN	1270		1610	nm	PIN
Receiver Sensitivity	PIN			-28	dBm	Note (1)
Input Saturation Power	PSAT	-3			dBm	
(Overload)						
Los Of Signal Assert	PA	-35			dBm	
Los Of Signal De-assert	PD			-30	dBm	Note (2)
LOS Hysteresis	PA-PD	0.5	2	6	dB	

¹⁾ Measured with Light source 1XX0 nm, ER=8.2dB; BER =<10^-12 @PRBS=2^23-1 NRZ , "XX" is: 27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59 and 61; " $\Delta\lambda$ " is 7.5

Electrical Interface Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note			
Transmitter									
Total Supply Current	ICC			А	mA	Note (1)			
Transmitter Disable Input-High	VDISH	2		Vcc+0.3	V				
Transmitter Disable Input-Low	VDISL	0		0.8	V				
Transmitter Fault Input-High	VTxFH	2		Vcc+0.3	V				
Transmitter Fault Input-Low	VTxFL	0		0.8	V				
Receiver									
Total Supply Current	ICC			В	mA	Note (1)			
LOSS Output Voltage-High	VLOSH	2		Vcc+0.3	V	LVTTL			
LOSS Output Voltage-Low	VLOSL	0		0.8	V				

Note:

1) A (TX) + B (RX) = 300mA (Not include termination circuit)

Pin Definitions

Pin	Symbol	Name/Description	NOTE
1	VEET	Transmitter Ground (Common with Receiver Ground)	1
2	TFAULT	Transmitter Fault.	

²⁾ When LOS de-asserted, the RX data+/- output is High-level (fixed)

3	Tols	Transmitter Disable. Laser output disabled on high or open.	2
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	3
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	3
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	3
7	Rate Select	No connection required	4
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	5
9	VEER	Receiver Ground (Common with Transmitter Ground)	1
10	VEER	Receiver Ground (Common with Transmitter Ground)	1
11	VEER	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	VEER	Receiver Ground (Common with Transmitter Ground)	1
15	Vccr	Receiver Power Supply	
16	Vсст	Transmitter Power Supply	
17	VEET	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	VEET	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1) Circuit ground is internally isolated from chassis ground.
- 2) Laser output disabled on T_{DIS} >2.0V or open, enabled on T_{DIS} <0.8V.
- 3) Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V.MOD_DEF (0) pulls line low to indicate module is plugged in.
- 4) This is an optional input used to control the receiver bandwidth for compatibility with multiple data rates (most likely Fiber Channel 1x and 2x Rates). If implemented, the input will be internally pulled down with > 30kΩ resistor. The input states are:

i. Low (0 – 0.8V): Reduced Bandwidth

ii. (>0.8, < 2.0V): Undefined

iii. High (2.0 – 3.465V): Full Bandwidth

iv. Open: Reduced Bandwidth

5) LOS is open collector output should be pulled up with 4.7k - 10kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

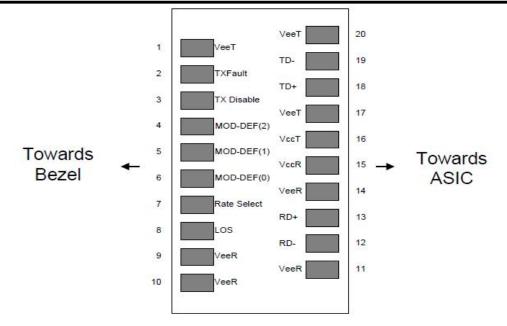


Figure 2. Pin out of Connector Block on Host Board

Absolute Maximum Ratings

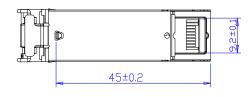
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Storage Temperature	Ts	-40		85	°C	
Relative Humidity	RH	5		95	%	
Power Supply Voltage	VCC	-0.5		4	V	
Signal Input Voltage		-0.3		Vcc+0.3	V	
Receiver Damage Threshold		+6			dBm	

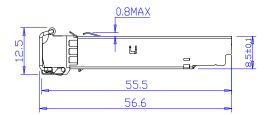
Digital Diagnostic Functions

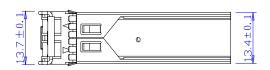
ETU-LINK ESCXX12-3LCD80 transceivers support the 2-wire serial communication protocol as defined in the SFP MSA. It is very closely related to the E2PROM defined in the GBIC standard, with the same electrical specifications.

The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

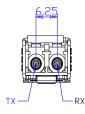
Additionally, ETU-LINK SFP transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current transmitted optical power, and received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

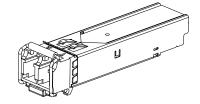

The SFP MSA defines a 256-byte memory map in E2PROM that is accessible over a 2-wire serial interface at the


8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The interface is identical to, and is thus fully backward compatible with both the GBIC Specification and the SFP Multi Source Agreement.

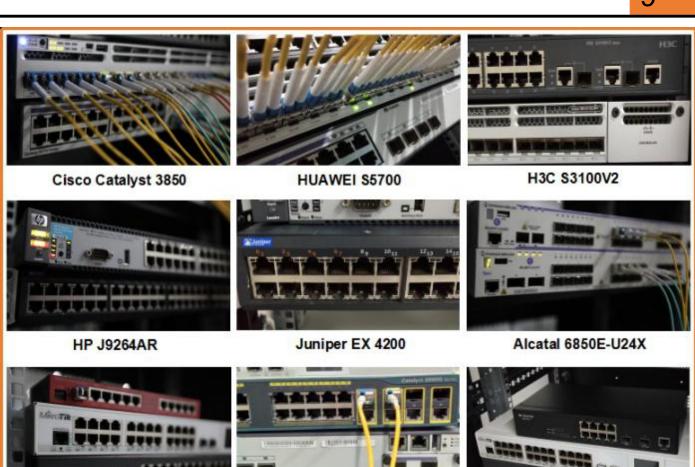

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E2PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

Digital diagnostics for the ESCXX12-3LCD80 are internally calibrated by default


Mechanical Specifications



Units in mm


Regulatory Compliance

Feature	Reference	Performance	
Electrostatic discharge (ESD)	IEC/EN 61000-4-2	Compatible with standards	
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 55022 Class B (CISPR 22A)	Compatible with standards	
Laser Eye Safety	FDA 21CFR 1040.10, 1040.11 IEC/EN 60825-1, 2	Class 1 laser product	
Component Recognition	IEC/EN 60950, UL	Compatible with standards	
ROHS	2002/95/EC	Compatible with standards	
EMC	EN61000-3	Compatible with standards	

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Mikrotik CR5226-24G-25+RM

Cisco Catalyst 2960G

Volktek MEN-4110

Product Production Process

Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Packaging

ETU-Link provides two kinds of packaging, 10pcs/Tray and individual package.

Company: ETU-Link Technology Co., LTD

Address: 4th Floor, C Building, JinBoLong Industrial Park, QingQuan Road, LongHua District,

Shenzhen city, Guangdong Province, China 518109

Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com.

Please e-mail us at sales@etulinktechnology.com or call us for assistance.